Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659944

RESUMO

Despite early optimism, therapeutics targeting oxidative phosphorylation (OxPhos) have faced clinical setbacks, stemming from their inability to distinguish healthy from cancerous mitochondria. Herein, we describe an actionable bioenergetic mechanism unique to cancerous mitochondria inside acute myeloid leukemia (AML) cells. Unlike healthy cells which couple respiration to the synthesis of ATP, AML mitochondria were discovered to support inner membrane polarization by consuming ATP. Because matrix ATP consumption allows cells to survive bioenergetic stress, we hypothesized that AML cells may resist cell death induced by OxPhos damaging chemotherapy by reversing the ATP synthase reaction. In support of this, targeted inhibition of BCL-2 with venetoclax abolished OxPhos flux without impacting mitochondrial membrane potential. In surviving AML cells, sustained polarization of the mitochondrial inner membrane was dependent on matrix ATP consumption. Mitochondrial ATP consumption was further enhanced in AML cells made refractory to venetoclax, consequential to downregulations in both the proton-pumping respiratory complexes, as well as the endogenous F 1 -ATPase inhibitor ATP5IF1 . In treatment-naive AML, ATP5IF1 knockdown was sufficient to drive venetoclax resistance, while ATP5IF1 overexpression impaired F 1 -ATPase activity and heightened sensitivity to venetoclax. Collectively, our data identify matrix ATP consumption as a cancer-cell intrinsic bioenergetic vulnerability actionable in the context of mitochondrial damaging chemotherapy.

2.
Dev Cell ; 59(1): 79-90.e6, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38101411

RESUMO

Sperm gain fertilization competence in the female reproductive tract through a series of biochemical changes and a requisite switch from linear progressive to hyperactive motility. Despite being essential for fertilization, regulation of sperm energy transduction is poorly understood. This knowledge gap confounds interpretation of interspecies variation and limits progress in optimizing sperm selection for assisted reproduction. Here, we developed a model of mouse sperm bioenergetics using metabolic phenotyping data, quantitative microscopy, and spectral flow cytometry. The results define a mechanism of motility regulation by microenvironmental pyruvate. Rather than being consumed as a mitochondrial fuel source, pyruvate stimulates hyperactivation by repressing lactate oxidation and activating glycolysis in the flagellum through provision of nicotinamide adenine dinucleotide (NAD)+. These findings provide evidence that the transitions in motility requisite for sperm competence are governed by changes in the metabolic microenvironment, highlighting the unexplored potential of using catabolite combination to optimize sperm selection for fertilization.


Assuntos
Ácido Pirúvico , Motilidade dos Espermatozoides , Masculino , Feminino , Animais , Camundongos , Ácido Pirúvico/metabolismo , Sêmen/metabolismo , Metabolismo Energético/fisiologia , Espermatozoides/metabolismo , Oxirredução
3.
Function (Oxf) ; 4(3): zqad012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168496

RESUMO

The various functions of skeletal muscle (movement, respiration, thermogenesis, etc.) require the presence of oxygen (O2). Inadequate O2 bioavailability (ie, hypoxia) is detrimental to muscle function and, in chronic cases, can result in muscle wasting. Current therapeutic interventions have proven largely ineffective to rescue skeletal muscle from hypoxic damage. However, our lab has identified a mammalian skeletal muscle that maintains proper physiological function in an environment depleted of O2. Using mouse models of in vivo hindlimb ischemia and ex vivo anoxia exposure, we observed the preservation of force production in the flexor digitorum brevis (FDB), while in contrast the extensor digitorum longus (EDL) and soleus muscles suffered loss of force output. Unlike other muscles, we found that the FDB phenotype is not dependent on mitochondria, which partially explains the hypoxia resistance. Muscle proteomes were interrogated using a discovery-based approach, which identified significantly greater expression of the transmembrane glucose transporter GLUT1 in the FDB as compared to the EDL and soleus. Through loss-and-gain-of-function approaches, we determined that GLUT1 is necessary for the FDB to survive hypoxia, but overexpression of GLUT1 was insufficient to rescue other skeletal muscles from hypoxic damage. Collectively, the data demonstrate that the FDB is uniquely resistant to hypoxic insults. Defining the mechanisms that explain the phenotype may provide insight towards developing approaches for preventing hypoxia-induced tissue damage.


Assuntos
Hipóxia , Músculo Esquelético , Camundongos , Animais , Transportador de Glucose Tipo 1/metabolismo , Músculo Esquelético/metabolismo , Hipóxia/genética , Atrofia Muscular/metabolismo , Oxigênio/metabolismo , Fenótipo , Mamíferos/metabolismo
4.
Front Cardiovasc Med ; 10: 1118738, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937923

RESUMO

Skeletal muscle injury in peripheral artery disease (PAD) has been attributed to vascular insufficiency, however evidence has demonstrated that muscle cell responses play a role in determining outcomes in limb ischemia. Here, we demonstrate that genetic ablation of Pax7+ muscle progenitor cells (MPCs) in a model of hindlimb ischemia (HLI) inhibited muscle regeneration following ischemic injury, despite a lack of morphological or physiological changes in resting muscle. Compared to control mice (Pax7WT), the ischemic limb of Pax7-deficient mice (Pax7Δ) was unable to generate significant force 7 or 28 days after HLI. A significant increase in adipose was observed in the ischemic limb 28 days after HLI in Pax7Δ mice, which replaced functional muscle. Adipogenesis in Pax7Δ mice corresponded with a significant increase in PDGFRα+ fibro/adipogenic progenitors (FAPs). Inhibition of FAPs with batimastat decreased muscle adipose but increased fibrosis. In vitro, Pax7Δ MPCs failed to form myotubes but displayed increased adipogenesis. Skeletal muscle from patients with critical limb threatening ischemia displayed increased adipose in more ischemic regions of muscle, which corresponded with fewer satellite cells. Collectively, these data demonstrate that Pax7+ MPCs are required for muscle regeneration after ischemia and suggest that muscle regeneration may be an important therapeutic target in PAD.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36706677

RESUMO

Prohibitins (PHB1 and PHB2) are ubiquitously expressed proteins which play critical roles in multiple biological processes, and together form the ring-like PHB complex found in phospholipid-rich cellular compartments including lipid rafts. Recent studies have implicated PHB1 as a mediator of fatty acid transport as well as a membrane scaffold mediating B lymphocyte and mast cell signal transduction. However, the specific role of PHBs in the macrophage have not been characterized, including their role in fatty acid uptake and lipid raft-mediated inflammatory signaling. We hypothesized that the PHB complex regulates macrophage inflammatory signaling through the formation of lipid rafts. To evaluate our hypothesis, RAW 264.7 macrophages were transduced with shRNA against PHB1, PHB2, or scrambled control (Scr), and then stimulated with lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-α), which activate lipid raft-dependent receptor signaling (CD14/TLR4 and TNFR1, respectively). PHB1 knockdown was lethal, whereas PHB2 knockdown (PHB2kd), which also resulted in decreased PHB1 expression, led to attenuated nuclear factor-kappa-B (NF-κB) activation and subsequent cytokine and chemokine production. PHB2kd macrophages also had decreased cell surface TNFR1, CD14, TLR4, and lipid raft marker ganglioside GM1 at baseline and post-stimuli. Post-LPS, PHB2kd macrophages did not increase the concentration of cellular saturated, monounsaturated, and polyunsaturated fatty acids. This was accompanied by decreased lipid raft formation and modified plasma membrane molecular packing, further supporting the PHB complex's importance in lipid raft formation. Taken together, these data suggest a critical role for PHBs in regulating macrophage inflammatory signaling via maintenance of fatty acid composition and lipid raft structure. SUMMARY: Prohibitins are proteins found in phospholipid-rich cellular compartments, including lipid rafts, that play important roles in signaling, transcription, and multiple other cell functions. Macrophages are key cells in the innate immune response and the presence of membrane lipid rafts is integral to signal transduction, but the role of prohibitins in macrophage lipid rafts and associated signaling is unknown. To address this question, prohibitin knockdown macrophages were generated and responses to lipopolysaccharide and tumor necrosis factor-alpha, which act through lipid raft-dependent receptors, were analyzed. Prohibitin knockdown macrophages had significantly decreased cytokine and chemokine production, transcription factor activation, receptor expression, lipid raft assembly and membrane packing, and altered fatty acid remodeling. These data indicate a novel role for prohibitins in macrophage inflammatory signaling through regulation of fatty acid composition and lipid raft formation.


Assuntos
Proibitinas , Receptores Tipo I de Fatores de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Lipopolissacarídeos , Receptor 4 Toll-Like/metabolismo , Ácidos Graxos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Macrófagos , Citocinas/metabolismo , Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo , Fosfolipídeos/metabolismo , Quimiocinas/metabolismo
6.
Biosci Rep ; 42(4)2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35315490

RESUMO

Mitochondria are central to the physiology and survival of nearly all eukaryotic cells and house diverse metabolic processes including oxidative phosphorylation, reactive oxygen species buffering, metabolite synthesis/exchange, and Ca2+ sequestration. Mitochondria are phenotypically heterogeneous and this variation is essential to the complexity of physiological function among cells, tissues, and organ systems. As a consequence of mitochondrial integration with so many physiological processes, small molecules that modulate mitochondrial metabolism induce complex systemic effects. In the case of many commonly prescribed drugs, these interactions may contribute to drug therapeutic mechanisms, induce adverse drug reactions, or both. The purpose of this article is to review historical and recent advances in the understanding of the effects of prescription drugs on mitochondrial metabolism. Specific 'modes' of xenobiotic-mitochondria interactions are discussed to provide a set of qualitative models that aid in conceptualizing how the mitochondrial energy transduction system may be affected. Findings of recent in vitro high-throughput screening studies are reviewed, and a few candidate drug classes are chosen for additional brief discussion (i.e. antihyperglycemics, antidepressants, antibiotics, and antihyperlipidemics). Finally, recent improvements in pharmacokinetics models that aid in quantifying systemic effects of drug-mitochondria interactions are briefly considered.


Assuntos
Medicamentos sob Prescrição , Metabolismo Energético , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Medicamentos sob Prescrição/metabolismo , Medicamentos sob Prescrição/farmacologia , Espécies Reativas de Oxigênio/metabolismo
7.
Elife ; 112022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35254259

RESUMO

Cholinergic and sympathetic counter-regulatory networks control numerous physiological functions, including learning/memory/cognition, stress responsiveness, blood pressure, heart rate, and energy balance. As neurons primarily utilize glucose as their primary metabolic energy source, we generated mice with increased glycolysis in cholinergic neurons by specific deletion of the fructose-2,6-phosphatase protein TIGAR. Steady-state and stable isotope flux analyses demonstrated increased rates of glycolysis, acetyl-CoA production, acetylcholine levels, and density of neuromuscular synaptic junction clusters with enhanced acetylcholine release. The increase in cholinergic signaling reduced blood pressure and heart rate with a remarkable resistance to cold-induced hypothermia. These data directly demonstrate that increased cholinergic signaling through the modulation of glycolysis has several metabolic benefits particularly to increase energy expenditure and heat production upon cold exposure.


Assuntos
Acetilcolina , Junção Neuromuscular , Acetilcolina/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Colinérgicos/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Junção Neuromuscular/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Termogênese
8.
J Biol Chem ; 297(4): 101140, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461088

RESUMO

Biological energy transduction underlies all physiological phenomena in cells. The metabolic systems that support energy transduction have been of great interest due to their association with numerous pathologies including diabetes, cancer, rare genetic diseases, and aberrant cell death. Commercially available bioenergetics technologies (e.g., extracellular flux analysis, high-resolution respirometry, fluorescent dye kits, etc.) have made practical assessment of metabolic parameters widely accessible. This has facilitated an explosion in the number of studies exploring, in particular, the biological implications of oxygen consumption rate (OCR) and substrate level phosphorylation via glycolysis (i.e., via extracellular acidification rate (ECAR)). Though these technologies have demonstrated substantial utility and broad applicability to cell biology research, they are also susceptible to historical assumptions, experimental limitations, and other caveats that have led to premature and/or erroneous interpretations. This review enumerates various important considerations for designing and interpreting cellular and mitochondrial bioenergetics experiments, some common challenges and pitfalls in data interpretation, and some potential "next steps" to be taken that can address these highlighted challenges.


Assuntos
Diabetes Mellitus/metabolismo , Doenças Genéticas Inatas/metabolismo , Glicólise , Mitocôndrias/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Fosforilação Oxidativa , Humanos , Consumo de Oxigênio
10.
Am J Physiol Endocrinol Metab ; 320(5): E938-E950, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33813880

RESUMO

Elevated mitochondrial hydrogen peroxide (H2O2) emission and an oxidative shift in cytosolic redox environment have been linked to high-fat-diet-induced insulin resistance in skeletal muscle. To test specifically whether increased flux through mitochondrial fatty acid oxidation, in the absence of elevated energy demand, directly alters mitochondrial function and redox state in muscle, two genetic models characterized by increased muscle ß-oxidation flux were studied. In mice overexpressing peroxisome proliferator-activated receptor-α in muscle (MCK-PPARα), lipid-supported mitochondrial respiration, membrane potential (ΔΨm), and H2O2 production rate (JH2O2) were increased, which coincided with a more oxidized cytosolic redox environment, reduced muscle glucose uptake, and whole body glucose intolerance despite an increased rate of energy expenditure. Similar results were observed in lipin-1-deficient, fatty-liver dystrophic mice, another model characterized by increased ß-oxidation flux and glucose intolerance. Crossing MCAT (mitochondria-targeted catalase) with MCK-PPARα mice normalized JH2O2 production, redox environment, and glucose tolerance, but surprisingly, both basal and absolute insulin-stimulated rates of glucose uptake in muscle remained depressed. Also surprising, when placed on a high-fat diet, MCK-PPARα mice were characterized by much lower whole body, fat, and lean mass as well as improved glucose tolerance relative to wild-type mice, providing additional evidence that overexpression of PPARα in muscle imposes more extensive metabolic stress than experienced by wild-type mice on a high-fat diet. Overall, the findings suggest that driving an increase in skeletal muscle fatty acid oxidation in the absence of metabolic demand imposes mitochondrial reductive stress and elicits multiple counterbalance metabolic responses in an attempt to restore bioenergetic homeostasis.NEW & NOTEWORTHY Prior work has suggested that mitochondrial dysfunction is an underlying cause of insulin resistance in muscle because it limits fatty acid oxidation and therefore leads to the accumulation of cytotoxic lipid intermediates. The implication has been that therapeutic strategies to accelerate ß-oxidation will be protective. The current study provides evidence that genetically increasing flux through ß-oxidation in muscle imposes reductive stress that is not beneficial but rather detrimental to metabolic regulation.


Assuntos
Catalase/genética , Intolerância à Glucose/genética , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , PPAR alfa/genética , Animais , Catalase/metabolismo , Metabolismo Energético/genética , Intolerância à Glucose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Musculares/genética , Especificidade de Órgãos/genética , Oxirredução , Estresse Oxidativo/genética , PPAR alfa/metabolismo
11.
Vasc Med ; 26(3): 247-258, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33685287

RESUMO

Critical limb ischemia (CLI) is the most severe manifestation of peripheral artery disease (PAD) and is characterized by high rates of morbidity and mortality. As with most severe cardiovascular disease manifestations, Black individuals disproportionately present with CLI. Accordingly, there remains a clear need to better understand the reasons for this discrepancy and to facilitate personalized therapeutic options specific for this population. Gastrocnemius muscle was obtained from White and Black healthy adult volunteers and patients with CLI for whole transcriptome shotgun sequencing (WTSS) and enrichment analysis was performed to identify alterations in specific Reactome pathways. When compared to their race-matched healthy controls, both White and Black patients with CLI demonstrated similar reductions in nuclear and mitochondrial encoded genes and mitochondrial oxygen consumption across multiple substrates, indicating a common bioenergetic paradigm associated with amputation outcomes regardless of race. Direct comparisons between tissues of White and Black patients with CLI revealed hemostasis, extracellular matrix organization, platelet regulation, and vascular wall interactions to be uniquely altered in limb muscles of Black individuals. Among traditional vascular growth factor signaling targets, WTSS revealed only Tie1 to be significantly altered from White levels in Black limb muscle tissues. Quantitative reverse transcription polymerase chain reaction validation of select identified targets verified WTSS directional changes and supports reductions in MMP9 and increases in NUDT4P1 and GRIK2 as unique to limb muscles of Black patients with CLI. This represents a critical first step in better understanding the transcriptional program similarities and differences between Black and White patients in the setting of amputations related to CLI and provides a promising start for therapeutic development in this population.


Assuntos
Isquemia Crônica Crítica de Membro , Doença Arterial Periférica , Adulto , Amputação Cirúrgica , Estado Terminal , Humanos , Isquemia/diagnóstico , Isquemia/genética , Isquemia/cirurgia , Salvamento de Membro , Músculo Esquelético/cirurgia , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/genética , Doença Arterial Periférica/cirurgia , Fatores Raciais , Fatores de Risco , Resultado do Tratamento
12.
Cancer Metab ; 9(1): 3, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468237

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the most prevalent form of liver malignancy and carries poor prognoses due to late presentation of symptoms. Treatment of late-stage HCC relies heavily on chemotherapeutics, many of which target cellular energy metabolism. A key platform for testing candidate chemotherapeutic compounds is the intrahepatic orthotopic xenograft (IOX) model in rodents. Translational efficacy from the IOX model to clinical use is limited (in part) by variation in the metabolic phenotypes of the tumor-derived cells that can be induced by selective adaptation to subculture conditions. METHODS: In this study, a detailed multilevel systems approach combining microscopy, respirometry, potentiometry, and extracellular flux analysis (EFA) was utilized to examine metabolic adaptations that occur under aglycemic growth media conditions in HCC-derived (HEPG2) cells. We hypothesized that aglycemic growth would result in adaptive "aerobic poise" characterized by enhanced capacity for oxidative phosphorylation over a range of physiological energetic demand states. RESULTS: Aglycemic growth did not invoke adaptive changes in mitochondrial content, network complexity, or intrinsic functional capacity/efficiency. In intact cells, aglycemic growth markedly enhanced fermentative glycolytic substrate-level phosphorylation during glucose refeeding and enhanced responsiveness of both fermentation and oxidative phosphorylation to stimulated energy demand. Additionally, aglycemic growth induced sensitivity of HEPG2 cells to the provitamin menadione at a 25-fold lower dose compared to control cells. CONCLUSIONS: These findings indicate that growth media conditions have substantial effects on the energy metabolism of subcultured tumor-derived cells, which may have significant implications for chemotherapeutic sensitivity during incorporation in IOX testing panels. Additionally, the metabolic phenotyping approach used in this study provides a practical workflow that can be incorporated with IOX screening practices to aid in deciphering the metabolic underpinnings of chemotherapeutic drug sensitivity.

13.
JCI Insight ; 5(18)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32841216

RESUMO

Compromised muscle mitochondrial metabolism is a hallmark of peripheral arterial disease, especially in patients with the most severe clinical manifestation - critical limb ischemia (CLI). We asked whether inflexibility in metabolism is critical for the development of myopathy in ischemic limb muscles. Using Polg mtDNA mutator (D257A) mice, we reveal remarkable protection from hind limb ischemia (HLI) due to a unique and beneficial adaptive enhancement of glycolytic metabolism and elevated ischemic muscle PFKFB3. Similar to the relationship between mitochondria from CLI and claudicating patient muscles, BALB/c muscle mitochondria are uniquely dysfunctional after HLI onset as compared with the C57BL/6 (BL6) parental strain. AAV-mediated overexpression of PFKFB3 in BALB/c limb muscles improved muscle contractile function and limb blood flow following HLI. Enrichment analysis of RNA sequencing data on muscle from CLI patients revealed a unique deficit in the glucose metabolism Reactome. Muscles from these patients express lower PFKFB3 protein, and their muscle progenitor cells possess decreased glycolytic flux capacity in vitro. Here, we show supplementary glycolytic flux as sufficient to protect against ischemic myopathy in instances where reduced blood flow-related mitochondrial function is compromised preclinically. Additionally, our data reveal reduced glycolytic flux as a common characteristic of the failing CLI patient limb skeletal muscle.


Assuntos
Glicólise , Membro Posterior/patologia , Isquemia/complicações , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Doenças Musculares/prevenção & controle , Fosfofrutoquinase-2/administração & dosagem , Animais , Terapia Genética , Membro Posterior/irrigação sanguínea , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/etiologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Fosfofrutoquinase-2/genética , Transcriptoma
14.
J Biol Chem ; 295(48): 16207-16216, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32747443

RESUMO

Compensatory changes in energy expenditure occur in response to positive and negative energy balance, but the underlying mechanism remains unclear. Under low energy demand, the mitochondrial electron transport system is particularly sensitive to added energy supply (i.e. reductive stress), which exponentially increases the rate of H2O2 (JH2O2) production. H2O2 is reduced to H2O by electrons supplied by NADPH. NADP+ is reduced back to NADPH by activation of mitochondrial membrane potential-dependent nicotinamide nucleotide transhydrogenase (NNT). The coupling of reductive stress-induced JH2O2 production to NNT-linked redox buffering circuits provides a potential means of integrating energy balance with energy expenditure. To test this hypothesis, energy supply was manipulated by varying flux rate through ß-oxidation in muscle mitochondria minus/plus pharmacological or genetic inhibition of redox buffering circuits. Here we show during both non-ADP- and low-ADP-stimulated respiration that accelerating flux through ß-oxidation generates a corresponding increase in mitochondrial JH2O2 production, that the majority (∼70-80%) of H2O2 produced is reduced to H2O by electrons drawn from redox buffering circuits supplied by NADPH, and that the rate of electron flux through redox buffering circuits is directly linked to changes in oxygen consumption mediated by NNT. These findings provide evidence that redox reactions within ß-oxidation and the electron transport system serve as a barometer of substrate flux relative to demand, continuously adjusting JH2O2 production and, in turn, the rate at which energy is expended via NNT-mediated proton conductance. This variable flux through redox circuits provides a potential compensatory mechanism for fine-tuning energy expenditure to energy balance in real time.


Assuntos
Metabolismo Energético , Mitocôndrias Musculares/enzimologia , NADP Trans-Hidrogenase Específica para A ou B/metabolismo , Consumo de Oxigênio , Difosfato de Adenosina/metabolismo , Animais , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Proteínas Mitocondriais/metabolismo , Oxirredução
15.
PLoS One ; 15(4): e0225922, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32324778

RESUMO

Stored muscle carbohydrate supply and energetic efficiency constrain muscle functional capacity during exercise and are influenced by common physiological variables (e.g. age, diet, and physical activity level). Whether these constraints affect overall functional capacity or the timing of muscle energetic failure during acute hypoxia is not known. We interrogated skeletal muscle contractile properties in two anatomically distinct rodent hindlimb muscles that have well characterized differences in energetic efficiency (locomotory- extensor digitorum longus (EDL) and postural- soleus muscles) following a 24 hour fasting period that resulted in substantially reduced muscle carbohydrate supply. 180 mins of acute hypoxia resulted in complete energetic failure in all muscles tested, indicated by: loss of force production, substantial reductions in total adenosine nucleotide pool intermediates, and increased adenosine nucleotide degradation product-inosine monophosphate (IMP). These changes occurred in the absence of apparent myofiber structural damage assessed histologically by both transverse section and whole mount. Fasting and the associated reduction of the available intracellular carbohydrate pool (~50% decrease in skeletal muscle) did not significantly alter the timing to muscle functional impairment or affect the overall force/work capacities of either muscle type. Fasting resulted in greater passive tension development in both muscle types, which may have implications for the design of pre-clinical studies involving optimal timing of reperfusion or administration of precision therapeutics.


Assuntos
Jejum , Hipóxia/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Nucleotídeos de Adenina/análise , Nucleotídeos de Adenina/metabolismo , Animais , Metabolismo Energético , Jejum/efeitos adversos , Glicogênio/análise , Glicogênio/metabolismo , Hipóxia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Músculo Esquelético/fisiopatologia , Condicionamento Físico Animal
16.
Mol Metab ; 34: 1-15, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32180550

RESUMO

OBJECTIVE: Estrogen receptor-α (ERα) is a nuclear receptor family member thought to substantially contribute to the metabolic regulation of skeletal muscle. However, previous mouse models utilized to assess the necessity of ERα signaling in skeletal muscle were confounded by altered developmental programming and/or influenced by secondary effects, making it difficult to assign a causal role for ERα. The objective of this study was to determine the role of skeletal muscle ERα in regulating metabolism in the absence of confounding factors of development. METHODS: A novel mouse model was developed allowing for induced deletion of ERα in adult female skeletal muscle (ERαKOism). ERαshRNA was also used to knockdown ERα (ERαKD) in human myotubes cultured from primary human skeletal muscle cells isolated from muscle biopsies from healthy and obese insulin-resistant women. RESULTS: Twelve weeks of HFD exposure had no differential effects on body composition, VO2, VCO2, RER, energy expenditure, and activity counts across genotypes. Although ERαKOism mice exhibited greater glucose intolerance than wild-type (WT) mice after chronic HFD, ex vivo skeletal muscle glucose uptake was not impaired in the ERαKOism mice. Expression of pro-inflammatory genes was altered in the skeletal muscle of the ERαKOism, but the concentrations of these inflammatory markers in the systemic circulation were either lower or remained similar to the WT mice. Finally, skeletal muscle mitochondrial respiratory capacity, oxidative phosphorylation efficiency, and H2O2 emission potential was not affected in the ERαKOism mice. ERαKD in human skeletal muscle cells neither altered differentiation capacity nor caused severe deficits in mitochondrial respiratory capacity. CONCLUSIONS: Collectively, these results suggest that ERα function is superfluous in protecting against HFD-induced skeletal muscle metabolic derangements after postnatal development is complete.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Insulina/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Animais , Receptor alfa de Estrogênio/deficiência , Feminino , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/citologia
17.
Front Physiol ; 10: 804, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316393

RESUMO

During incomplete skeletal muscle recovery from ischemia, such as that occurs with critical limb ischemia, the temporal relationship between recovery of muscle capillary perfusion and contractile function is poorly defined. We examined this relationship in BALB/cJ mice (N = 24) following unilateral hindlimb ischemia (HLI), which pre-clinically mimics the myopathy observed in critical limb ischemia patients. Specifically, we examined this relationship in two phenotypically distinct muscles (i.e., "oxidative" soleus - Sol and "glycolytic" extensor digitorum longus - EDL) 14- or 56-days after HLI. Although overall limb blood flow (LDPI) reached its' recovery peak (48% of control) by HLI d14, the capillary networks in both the Sol and EDL (whole mount confocal imaging) were disrupted and competent muscle capillary perfusion (perfused lectin+µm2/muscle µm2) remained reduced. Interestingly, both Sol and EDL muscles recovered their distinct capillary structures and perfusion (Con Sol; 0.056 ± 0.02 lectin+µm2/muscle µm2, and Con EDL; 0.039 ± 0.005 lectin+µm2/muscle µm2) by HLI d56 (Sol; 0.062 ± 0.011 lectin+µm2/muscle µm2 and EDL; 0.0035 ± 0.005 lectin+µm2/muscle µm2), despite no further improvement in limb blood flow (LDPI). Both muscles suffered severe myopathy, indicated by loss of dystrophin positive immunostaining and the absence of stimulation induced isometric force production at HLI d14. Dystrophin immunofluorescence returned at HLI d56, although neither myofiber CSA (µm2) nor isometric force production (58 and 28% sustained deficits, Sol and EDL, respectively) recovered completely in either muscle. In summary, we reveal that the temporal relationship between the restoration of muscle capillary perfusion and functional ischemic skeletal muscle regeneration favors competent muscle capillary perfusion recovery in BALB/c mice in a phenotypically non-distinct manner.

18.
JCI Insight ; 3(21)2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30385731

RESUMO

The most severe manifestation of peripheral arterial disease (PAD) is critical limb ischemia (CLI). CLI patients suffer high rates of amputation and mortality; accordingly, there remains a clear need both to better understand CLI and to develop more effective treatments. Gastrocnemius muscle was obtained from 32 older (51-84 years) non-PAD controls, 27 claudicating PAD patients (ankle-brachial index [ABI] 0.65 ± 0.21 SD), and 19 CLI patients (ABI 0.35 ± 0.30 SD) for whole transcriptome sequencing and comprehensive mitochondrial phenotyping. Comparable permeabilized myofiber mitochondrial function was paralleled by both similar mitochondrial content and related mRNA expression profiles in non-PAD control and claudicating patient tissues. Tissues from CLI patients, despite being histologically intact and harboring equivalent mitochondrial content, presented a unique bioenergetic signature. This signature was defined by deficits in permeabilized myofiber mitochondrial function and a unique pattern of both nuclear and mitochondrial encoded gene suppression. Moreover, isolated muscle progenitor cells retained both mitochondrial functional deficits and gene suppression observed in the tissue. These findings indicate that muscle tissues from claudicating patients and non-PAD controls were similar in both their bioenergetics profile and mitochondrial phenotypes. In contrast, CLI patient limb skeletal muscles harbor a unique skeletal muscle mitochondriopathy that represents a potentially novel therapeutic site for intervention.


Assuntos
Claudicação Intermitente/genética , Isquemia/patologia , Mitocôndrias Musculares/patologia , Doença Arterial Periférica/genética , Idoso , Idoso de 80 Anos ou mais , Índice Tornozelo-Braço/métodos , Aterosclerose , Microambiente Celular/fisiologia , Estudos Transversais , Feminino , Humanos , Claudicação Intermitente/diagnóstico , Claudicação Intermitente/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/genética , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doença Arterial Periférica/complicações , Fenótipo , RNA Mensageiro/genética , Sequenciamento do Exoma/métodos
19.
Front Cell Neurosci ; 12: 276, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233321

RESUMO

The potential to control feeding behavior via hypothalamic AgRP/NPY neurons has led to many approaches to modulate their excitability-particularly by glutamatergic input. In the present study using NPY-hrGFP reporter mice, we visualize AgRP/NPY neuronal metabotropic glutamate receptor 1 (mGluR1) expression and test the effect of fasting on mGluR1 function. Using the pharmacological agonist dihydroxyphenylglycine (DHPG), we demonstrate the enhanced capacity of mGluR1 to drive firing of AgRP/NPY neurons after overnight fasting, while antagonist 3-MATIDA reduces firing. Further, under synaptic blockade we demonstrate that DHPG acts directly on AgRP/NPY neurons to create a slow inward current. Using an in vitro approach, we show that emulation of intracellular signals associated with fasting by forskolin enhances DHPG induced phosphorylation of extracellularly regulated-signal kinase (1/2) in GT1-7 cell culture. We show in vivo that blocking mGluR1 by antagonist 3-MATIDA lowers fasting induced refeeding. In summary, this study identifies a novel layer of regulation on AgRP/NPY neurons integrated with whole body energy balance.

20.
Skelet Muscle ; 8(1): 14, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29665848

RESUMO

BACKGROUND: The ability to assess skeletal muscle function and delineate regulatory mechanisms is essential to uncovering therapeutic approaches that preserve functional independence in a disease state. Skeletal muscle provides distinct experimental challenges due to inherent differences across muscle groups, including fiber type and size that may limit experimental approaches. The flexor digitorum brevis (FDB) possesses numerous properties that offer the investigator a high degree of experimental flexibility to address specific hypotheses. To date, surprisingly few studies have taken advantage of the FDB to investigate mechanisms regulating skeletal muscle function. The purpose of this study was to characterize and experimentally demonstrate the value of the FDB muscle for scientific investigations. METHODS: First, we characterized the FDB phenotype and provide reference comparisons to skeletal muscles commonly used in the field. We developed approaches allowing for experimental assessment of force production, in vitro and in vivo microscopy, and mitochondrial respiration to demonstrate the versatility of the FDB. As proof-of principle, we performed experiments to alter force production or mitochondrial respiration to validate the flexibility the FDB affords the investigator. RESULTS: The FDB is made up of small predominantly type IIa and IIx fibers that collectively produce less peak isometric force than the extensor digitorum longus (EDL) or soleus muscles, but demonstrates a greater fatigue resistance than the EDL. Unlike the other muscles, inherent properties of the FDB muscle make it amenable to multiple in vitro- and in vivo-based microscopy methods. Due to its anatomical location, the FDB can be used in cardiotoxin-induced muscle injury protocols and is amenable to electroporation of cDNA with a high degree of efficiency allowing for an effective means of genetic manipulation. Using a novel approach, we also demonstrate methods for assessing mitochondrial respiration in the FDB, which are comparable to the commonly used gastrocnemius muscle. As proof of principle, short-term overexpression of Pgc1α in the FDB increased mitochondrial respiration rates. CONCLUSION: The results highlight the experimental flexibility afforded the investigator by using the FDB muscle to assess mechanisms that regulate skeletal muscle function.


Assuntos
Modelos Biológicos , Músculo Esquelético/fisiologia , Animais , Respiração Celular/fisiologia , Eletroporação/métodos , Feminino , , Contração Isométrica/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/fisiologia , Fadiga Muscular/fisiologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/lesões , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...